行业资讯

led显示屏工作原理图(电子快门相比机械快门有什么优缺点)

我们现在用的手机大多数电子快门。当然单反上也有电子快门,比如你用5d3录像,中间你按了一下快门拍了一张照片,那就是用的电子快门。录像机用的也是电子快门。

led显示屏工作原理图,电子快门相比机械快门有什么优缺点?

我们现在用的手机大多数电子快门。当然单反上也有电子快门,比如你用5d3录像,中间你按了一下快门拍了一张照片,那就是用的电子快门。录像机用的也是电子快门。

电子快门的原理是通过对smos的断电再通电来拍摄照片的。

它的优点有这么几个。

一 没有声音。如果你偷拍美女估计你会觉得特别有用。

二 它几乎没有体积重量,所以手机上安装的都是电子快门。

三 它的快门时间要比机械快门快的多,现在基本能达到几万分之一秒。最高端的高速摄影研究所的好像已经达到几十万分之一秒了。这是机械快门永远做不到的。所以,现在的高速摄影几乎都是用的电子快门。

四 相对于机械快门,它的寿命要长的多,也可以说它是不会死的。

当然,它也有它的缺点。

一 它的快门迟滞现在难以解决。也就是说,当你发现最精彩的时刻按下快门但等它启动以后已经过去了。比如新闻摄影,体育摄影。很多镜头你是抓不到的。

二是它需要一直开着soms取景。特别耗电不说,而且对soms也有损伤。

三 相对于机械快门,它的画质有时候会受到一些影响。

四 有时候会出现果冻效应。不过这只是拍摄高速运动的物体中出现的变形,很少出现。其实不必在意。有时候你万一拍出了果冻效应也许是惊喜呢。

至于趋势,我个人认为电子快门会越来越强大,用的越来越多,但很难完全取代机械快门。

怎么把lcd液晶显示器改为led?

是改LED背光显示器吧。具体点就是把LCD面板后面的荧光灯管改LED灯管。只要是主流品牌型号都没问题。由于LED灯管比原来的功耗低很多,所以电流变压和控制电路都可以沿用原来的,只要将背光电路置换就行。不少地方都有LED套件开卖,接口都通用,一般都是6针接口。不过要注意led灯条的质量,差的还不如不改。

伽马射线的原理是什么?

伽马射线指的是波长短于0.01Å(埃米)的电磁波,是法国科学家P.V.维拉尔(Villard,Paul Ulrich)发现的。

在电磁波谱上,比伽马射线的波长稍长一些的便是我们熟知的X光,也就是伦琴射线(波长为0.01埃米~10纳米);波长再长一些的就是紫外线(波长为100~400纳米)以及可见光了。

所以伽马射线、X射线、紫外线,乃至光线、红外线、微波、无线电波从本质上来说,其实统统都是电磁波,其区别无非是波长各不相同而已。

那么电磁波又是什么东西呢?

简单来说,电磁波就是温度高于绝对零度的物质,向空间中衍生发射(辐射)的震荡粒子波,由方向相同且互相垂直的电场和磁场所组成。换言之,只要不是绝对零度的物体,都会向四面八方释放出电磁波,这就是通常所说的“电磁辐射(EMR)”。

因此我们不要一听见“电磁辐射”这个词语就瑟瑟发抖,并非所有的电磁辐射都会对人体产生伤害。

由于电磁波是物体具有温度才释放出来的一种能量,所以物体的温度一旦发生了改变,其辐射出来的电磁波的波长也会产生变化——相同的物体温度越高,辐射出来的电磁波的波长就越短。

举个例子来说,金属、木柴、玻璃在被火焰灼烧后都会释放出光芒,这种现象正是由于温度升高后,它们释放出的电磁波的波长缩短到了400~760纳米这个区间范围,而这个范围的电磁波正是能被人类肉眼感知到的“可见光”。

波长高于或低于可见光的电磁波,人类肉眼是无法感知到的,所以钢铁、木柴和玻璃在常温状态下释放出来的电磁波我们是看不见的。

我们平常测量体温所使用的额温计能瞬间测出体温,也是利用的这个原理。当我们的体温升高后,也会释放出波长更短的电磁波,而额温计中的芯片能测量出物体释放出的电磁波的波长,于是就能计算出辐射源的温度了。这就好比我们看见一根铁棍发出了红光,就知道了它在“发烧”一样。

那么通过温度越高,波长越短这个电磁辐射规律,我们是否可以认为,伽马射线既然位于电磁波谱上波长最短的位置,那么伽马射线的辐射源就一定具有相当高的温度呢?

当然不能这样生硬地理解,因为除了温度之外,物体的元素构成也会影响其辐射出的电磁波的波长。烧红的木柴和烧红的钢铁温度显然是不同的,也就是说钢铁需要达到更高的温度时才能释放出可见光(光子)。

现在你大概能想到萤火虫为什么既能发光,又不烫手了。因为有一些元素在达到特定条件时,即便在常温状态下也会产生化学反应,释放出400~760纳米的电磁波,于是就发出了没有温度的“荧光”。

伽马射线的产生原理

伽马射线也叫γ粒子流,是原子核发生能级跃迁,退激时释放出来的一种穿透力极强的射线,属于放射性现象,所以我们首先来了解一点放射性的知识。

大家都知道,在目前的元素周期表中一共具有100多种已知元素。元素与元素之间的区别是原子核中的质子数量有所不同——原子核中的质子数量相同的原子就是同一种元素。

然而,原子核的构成并非只有质子,还有中子。同一种元素中的原子,质子数量虽然相同,中子数量却不一定是相同的——这些质子数量相同,中子数量不同的的原子,被称为“同位素”。所谓“同位”,其字面意思就是位于元素周期表中的同一个位置。

换言之,即便是元素周期表中的同一种元素,它们的中子数量和结构也会有所不同,因而会表现出不同的核性质。

与同位素相反的是“核素”,指的是原子核中质子数量和中子数量都相同的原子。在已知的100多种元素中一共具有2600多种核素,按照核性质的不同,核素可以分为两大类型——稳定的,和不稳定的。

稳定的核素不会发生衰变,但是稳定核素只有280多种,分布于81种元素中。其余的2000多种核素全部都是不稳定的,大部分都分布于83号元素(铋)以上,只有极少数分布在83号元素以下。

不稳定的核素会自发性地发生衰变,逐渐转化成较为稳定的核素。原子核的衰变有三种形式:阿尔法衰变(α衰变)、贝塔衰变(β衰变)、伽马衰变(γ衰变)。发生伽马衰变时就会释放出伽马射线。

不过,伽马衰变一般不会独立发生,而是同时伴随着阿尔法衰变或贝塔衰变发生。

所谓阿尔法衰变,其实就是原子核自发性地释放出由两个中子和两个质子构成的α粒子;也就是说,发生阿尔法衰变时,原子核的中子和质子数量就减少了,这就意味着它的结构发生了改变,于是它就会转化成另一种核素。

除了释放出质子和中子之外,原子核的中子和质子还可能会相互转化——当一个中子转化成一个质子时,会同时释放出一粒电子;当一粒质子转化成一粒中子时,会同时释放出一粒正电子。这种现象就被称为β衰变,而在β衰变中释放出来的电子或正电子就被称为β粒子。

那么伽马衰变又是怎么回事呢?

在原子核发生了α衰变或者β衰变后,仍然处于不稳定的激发态,还需要释放出一定的能量才能稳定下来,这个过程被称为“退激发”。在退激发的过程中释放出来的能量就被称为γ粒子,也就是我们通常所说的伽马射线,此时发生的衰变就叫伽马衰变。这也正是上文所说的伽马射线通常都会伴随着阿尔法衰变或贝塔衰变的原因。

这就是伽马射线的产生原理。至于说人类何时能掌握伽马射线,我不太懂你这句话是什么意思,如果指的是应用,那么伽马射线在医疗及军事领域早就已经有所应用了;但如果要说完全理解伽马射线,尤其是宇宙中的伽马射线暴,还路漫漫其修远兮。

MOS管和场效应管一样吗?

场效应管是一种单极型(内部的载流子只有一种,电子或空穴)的半导体器件,其可以分为结型场效应管和MOS场效应管两种,每种场效应管按导电沟道的类型,又可以分为N沟道场效应管和P沟道场效应管。▲ 增强型MOS场效应管的电路符号。

MOS场效应管的汉语名为金属-氧化物-半导体场效应管,由于这个名字太长了,在电子技术中经常用MOSFET表示。MOS场效应管是场效应管中的一种,这种管子根据栅源电压为0V时,漏极电流的有无,又分为耗尽型场效应管和增强型场效应管两种。耗尽型场效应管在栅源电压为0V时,漏极电流最大,而增强型场效应管在栅源电压为0V时,漏极电流为0。上图为增强型P沟道和N沟道MOS场效应管的电路符号。耗尽型场效应管的电路符号如下图所示。▲ 耗尽型MOS场效应管的电路符号。

通过比较耗尽型场效应管和增强型场效应管的电路符号,我们可以发现,耗尽型场效应管漏源两极之间是用一竖线表示,说明这类场效应管在栅源电压为0V时,管子就有导电沟道,而增强型场效应管的漏源两极是不相连的,说明这类管子只有加上栅源电压时,管子才有导电沟道。

现在常用的各种MOS场效应管,几乎都是增强型的场效应管(譬如,IRF3205、AO3401、2N7000),而耗尽型MOS场效应管型号很少,只有2SK、2SJ系列场效应管中有少部分是这种耗尽型场效应管。▲ 结型场效应管的电路符号。

上图所示为P沟道结型场效应管和N沟道结型场效应管的电路符号。从它们的电路符号可以看出这种管子的导电沟道与上述的耗尽型MOS场效应管的符号一样,它也是一种耗尽型场效应管。由于结型场效应管的功率及噪声系数较小,故结型场效应管一般用于音频放大电路中,作为前置放大管使用。此外,这种管子还可以用于驻极体话筒、热释电传感器的内部作为阻抗变换。

若想了解更多的电子电路及元器件知识,请关注本头条号,谢谢。

大家设计电路主要是用哪款EDA软件?

电源开发离不开设计,那么都有那些软件来支持工程师们的工作呐?笔者整理了下电源电路设计常用软件合集。

一、SPICE模拟电路仿真

用于模拟电路仿真的SPICE(Simulation Program with Integrated Circuit Emphasis)软件于1972年由美国加州大学伯克利分校的计算机辅助设计小组利用FORTRAN语言开发而成,主要用于大规模集成电路的计算机辅助设计。

SPICE的正式实用版SPICE 2G在1975年正式推出,但是该程序的运行环境至少为小型机。1985年,加州大学伯克利分校用C语言对SPICE软件进行了改写,1988年SPICE被定为美国国家工业标准。与此同时,各种以SPICE为核心的商用模拟电路仿真软件,在SPICE的基础上做了大量实用化工作,从而使SPICE成为最为流行的电子电路仿真软件。

现在用得较多的是PSPICE6.2,在同类产品中是功能最为强大的模拟和数字电路混合仿真 EDA软件,它可以进行各种各样的电路仿真、激励建立、温度与噪声分析、模拟控制、波形输出、数据输出、并在同一窗口内同时显示模拟与数字的仿真结果。无论对哪种器件哪些电路进行仿真,都可以得到精确的仿真结果,并可以自行建立元器件及元器件库。

二、PSPICE信息电子电路设计软件

PSPICE则是由美国Microsim公司在SPICE 2G版本的基础上升级并用于PC机上的SPICE版本,其中采用自由格式语言的5.0版本自80年代以来在我国得到广泛应用,并且从6.0版本开始引入图形界面。1998年著名的EDA商业软件开发商ORCAD公司与Microsim公司正式合并,自此Microsim公司的PSPICE产品正式并入ORCAD公司的商业EDA系统中,而后,ORCAD被Cadence收购。

在随后推出的PSPICE Release 9.0与传统的SPICE软件相比,PSPICE 9.0在三大方面实现了重大变革:首先,在对模拟电路进行直流、交流和瞬态等基本电路特性分析的基础上,实现了蒙特卡罗分析、最坏情况分析以及优化设计等较为复杂的电路特性分析;第二,不但能够对模拟电路进行,而且能够对数字电路、数/模混合电路进行仿真;第三,集成度大大提高,电路图绘制完成后可直接进行电路仿真,并且可以随时分析观察仿真结果。

虽然PSPICE应用越来越广泛,但是也存在着明显的缺点。由于SPICE软件原先主要是针对信息电子电路设计而开发的,因此器件的模型都是针对小功率电子器件的,对于电力电子电路中所用的大功率器件存在的高电压、大注入现象不尽适用,有时甚至可能导致错误的结果。PSPICE采用变步长算法,对于以周期性的开关状态变化的电力电子电路而言,将造成大量的时间耗费在寻求合适的步长上面,从而导致计算时间的延长,有时甚至不收敛。另外,在磁性元件的模型方面PSPICE也有待加强。

PSPICE Release 9.0共有六大功能模块,其中核心模块是PSPICE A/D,其余功能模块分别是:Capture(电路原理图设计模块)、Stimulus Editor(激励信号编辑模块)、Model Editor(模型)。

三、Saber开关电源首选

Saber是美国Analogy公司开发并于1987年推出的模拟及混合信号仿真软件,Saber软件易主,成为Synopsys公司产品。被誉为全球最先进的系统仿真软件,也是唯一的多技术、多领域的系统仿真产品。与传统仿真软件不同,Saber在结构上采用硬件描述语言(MAST)和单内核混合仿真方案,并对仿真算法进行了改进,使Saber仿真速度更快、更加有效、应用也越来越广泛。应用工程师在进行系统设计时,建立最精确、最完善的系统仿真模型是至关重要的。

Saber可同时对模拟信号、事件驱动模拟信号、数字信号以及模数混合信号设备进行仿真。利用Calaversas算法,Saber可以确保同时进行的两个仿真进程都能获得最大效率,而且可以实现两个进程之间的信息交换,并在模拟和数字仿真分析之间实现了无缝联接。

在Saber中,仿真模型可以直接用数学公式和控制关系表达式来描述,而无需采用电子宏模型表达式。为了解决仿真过程中的收敛问题,Saber内部采用5种不同的算法依次对系统进行仿真,一旦其中某一种算法失败,Saber将自动采用下一种算法。通常,仿真精度越高,仿真过程使用的时间也越长。普通的仿真软件都不得不在仿真精度和仿真时间上进行平衡。Saber采用其独特的设计,能够保证在最少的时间内获得最高的仿真精度。Saber工作在SaberDesigner图形界面环境下,能够方便的实现与Cadence Design System、Mentor Graphics和Viewlogic的集成。

通过上述软件可以直接调用Saber进行仿真。

Saber的典型案例是航空器领域的系统设计,其整个设计过程包含了机械技术、电子技术、液压技术、燃油系统、娱乐系统、雷达无线技术等复杂的混合技术设计与仿真。从航空器、轮船、汽车到消费电子、电源设计都可以通过Saber来完成。

在开关电源设计中,如果有变压器,saber仿真是最好的,变压器模型比较全。saber仿真现在主要问题就是没有教材,不方便学习。

四、IsSpice交互式仿真软件

IsSpice是美国Intusoft公司推出的一种商业仿真软件,是ICAP/4软件集成系统的重要组成部分。InSpice是具有完善的仿真控制功能的交互式仿真软件,其主要特点包括:

(1)瞬态波形显示;

(2)电路元件电压、电流、功耗及模型参数显示;

(3)采用ICL交互式编程语言控制仿真过程;

(4)可进行成组参数扫描;

(5)可进行交流、直流、瞬态、噪声、傅立叶、失真度、温度、直流灵敏度、蒙特卡罗分析和最佳化分析;

(6)可测量电路参数临界值。

ICAP/4软件集成系统主要由SpiceNet、PreSPice、InSpice和IntuScope四大功能模块组成。ICAP/4的工作流程是:首先进入SpiceNet绘制电路图,并生成相应的Netlist文件,然后执行IsSpice仿真软件模块,在仿真之前系统将自动连接PreSpice仿真资料库中的元件模型,仿真完成之后利用IntuScope波形分析处理模块对仿真模型进行分析处理。

IntuScope波形分析处理软件能够实现数字式存储示波器和频谱分析仪的功能,能够对仿真结果进行实时分析和计算处理。主要能够

(1)显示各种分析类型的仿真波形;

(2)波形分析参数包括:有效值、峰-峰值、平均值、最大值、最小值;

(3)允许同时显示和分析大量波形;

(4)可进行回归、滤波、增益、相位、上升/下降时间分析和计算。

SpiceNet电路原理图绘制模块

SpiceNet是电路原理图绘制模块,主要实现电路原理图的绘制、Netlist文件的自动生成、瞬态波形显示以及交互式仿真控制。SpiceNet与当前流行的各种仿真系统兼容,其输出文档格式适用于Mentor、OrCAD和Protel系统。 ICAP/4工业版的PreSpice元件资料库中包含10,000种以上的元件模型,以ASCⅡ格式保存,用户可以随时通过仿真模型浏览器Parts Browser对不同元器件供应商提供的元件模型进行浏览。同时,ICAP/4系统还提供了100多个通用模型,输入相应的元件参数后即可直接调用。另外,用户可以即时通过Internet下载最新的元件库。

五、EWB模数电路的混合仿真

20世纪90年代初推出的电路仿真软件。相对于其它EDA软件,它是较小巧的软件(只有16M)。但它对模数电路的混合仿真功能却十分强大,几乎100%地仿真出真实电路的结果,并且它在桌面上提供了万用表、示波器、信号发生器、扫频仪、逻辑分析仪、数字信号发生器、逻辑转换器和电压表、电流表等仪器仪表。它的界面直观,易学易用。它的很多功能模仿了SPICE的设计,但分析功能比PSPICE稍少一些。

六、MATLAB产品族

它们的一大特性是有众多的面向具体应用的工具箱和仿真块,包含了完整的函数集用来对图像信号处理、控制系统设计、神经网络等特殊应用进行分析和设计。它具有数据采集、报告生成和MATLAB语言编程产生独立C/C++代码等功能。

七、PCB设计软件

PCB(Printed—Circuit Board)设计软件种类很多,如Protel;OrCAD;Viewlogic;

PowerPCB;Cadence PSD;MentorGraphices的Expedition PCB;Zuken CadStart;

Winboard/Windraft/Ivex-SPICE;PCB Studio;;TANGO等等。其中Protel是个完整的全方位电路设计系统,包含了电原理图绘制、模拟电路与数字电路混合信号仿真、多层印刷电路板设计(包含印刷电路板自动布局布线),可编程逻辑器件设计、图表生成、电路表格生成、支持宏操作等功能,并具有Client/Server(客户/服务器体系结构,同时还兼容一些其它设计软件的文件格式,如ORCAD、PSPICE、EXCEL等。

栏目导航

联系我们

电话:18921928308

邮 箱:978313@qq.com

地 址:江苏省高邮市菱塘回族乡团结东路8号